Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

*170392513

BIOLOGY 0610/42

Paper 4 Theory (Extended)

May/June 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 24 pages. Blank pages are indicated.

1	Homeostasis i	s the	maintenance	of a	constant internal	environme
	HUHIEUSIASIS I	Suit	mannenance	ui a	CONSTAIN INTERNA	ELIVITOLILI

(a) Human skin is involved in the maintenance of a constant internal body tem

/= 1	O			
(i)) Skin	10	an	organ
١.		ıo	an	organi.

	State why the skin is an organ.	
		. [1
(ii)	State the name of the organ that coordinates the control of body temperature.	
		. [1

Fig. 1.1 shows a diagram of a section through human skin.

Fig. 1.1

(iii) State the names of structures A, B and C in Fig. 1.1.

Α	
В	
_	
C	٠.
	3

	(iv)	Structure D is a shunt vessel and E is an arteriole.
		Describe how these blood vessels are involved in maintaining a constant internal body temperature in a cold environment.
		[3]
(b)	Ene	ergy is used to maintain body temperature.
	Stat	te three other uses of energy in humans.
	1	
	2	
	3	[3]
		[Total: 11]
		[10tal. 11]

Pre	gnancy can occur after the fusion of a male gamete and a female gamete.
(a)	State the name of the ball of cells that implants into the uterus after fertilisation.
	[1]
(b)	There are many changes that occur in a fetus during pregnancy.
(5)	
	Compare the development of a fetus in the early stages of pregnancy to its development in the late stages of pregnancy.
	[2]
(c)	Describe the functions of amniotic fluid and the amniotic sac.
(-)	
	[4]
(d)	The umbilical artery is found in the umbilical cord. This artery transports blood away from the heart of the fetus.
	The umbilical artery is unusual because it transports deoxygenated blood.
	(i) State the name of one other artery in the mother that transports deoxygenated blood.
	[1]

(ii)	State one excretory product that is transported from the fetus to the placenta.
	[1]
(iii)	State the name of the process that allows substances to move down a concentration gradient across the placenta.
	[1]

(e) One of the functions of the placenta is to provide a barrier to toxins and pathogens.

A study was done on donated afterbirths. The afterbirth is a placenta with part of the umbilical cord attached.

The purpose of the study was to find the maximum size of particles that can pass through the placenta and enter the umbilical cord.

The researchers inserted beads with a diameter of $0.5\,\mu m$ into blood vessels in the placenta. Three hours later they recorded the percentage of beads found in the blood in the placenta and in the umbilical cord.

They then repeated the tests using beads with diameters of $0.8\,\mu m,~2.4\,\mu m,~5.0\,\mu m$ and $8.0\,\mu m.$

Their results are shown in Fig. 2.1.

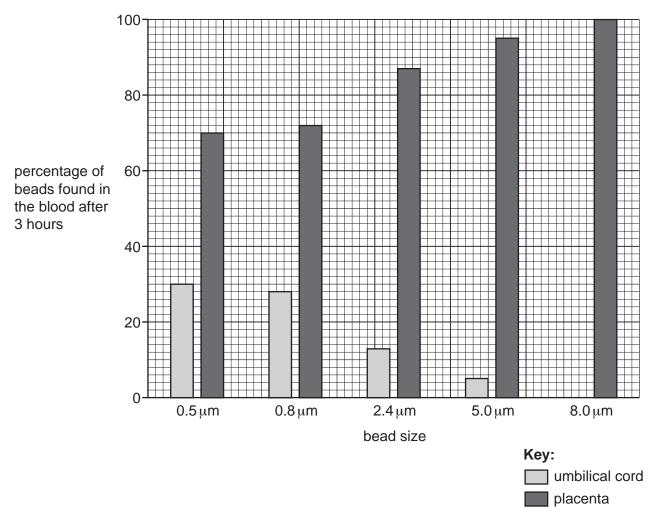


Fig. 2.1

(i)	Convert	the diameter of the 5.0 μm be	eads into millimetres (mm)	
	Space for	or working.		
				mm [1]
ii)	One milli	on beads with a diameter of	2.4 μm were injected into	the placenta.
	Calculate	e the number of these beads	in the umbilical cord after	3 hours.
	Space fo	or working.		
	- 1	3		
				beadsbeads
				[2]
ii)	Table 2.1	shows a range of substance	es and their diameters.	
		Table	e 2.1	
		toxins and pathogens	diameter/μm	
		nicotine	2.0×10^{-2}	
		drug X	3.0×10^{-2}	
		rubella virus	5.0×10^{-2}	
		\ \(\frac{1}{2} \cdot 1	8.0×10^{-1}	
		Vibrio cholerae		
		Trypanosoma brucei	1.8×10^{1}	
		Trypanosoma brucei e names of all the toxins a	1.8 × 10 ¹ nd pathogens listed in Ta	able 2.1 that could pass
		Trypanosoma brucei	1.8 × 10 ¹ nd pathogens listed in Ta	able 2.1 that could pass
	through t	Trypanosoma brucei e names of all the toxins a	1.8 × 10 ¹ nd pathogens listed in Tambilical cord.	able 2.1 that could pass
	through t	Trypanosoma brucei e names of all the toxins a the placenta and enter the ur	1.8 × 10 ¹ nd pathogens listed in Tambilical cord.	able 2.1 that could pass
	through t	Trypanosoma brucei e names of all the toxins a the placenta and enter the ur	1.8 × 10 ¹ nd pathogens listed in Tambilical cord.	able 2.1 that could pass

(f) Fig. 2.2 shows the junction between two neurones with drug **X** absent and two neurones with drug **X** present, immediately after a painful stimulus.

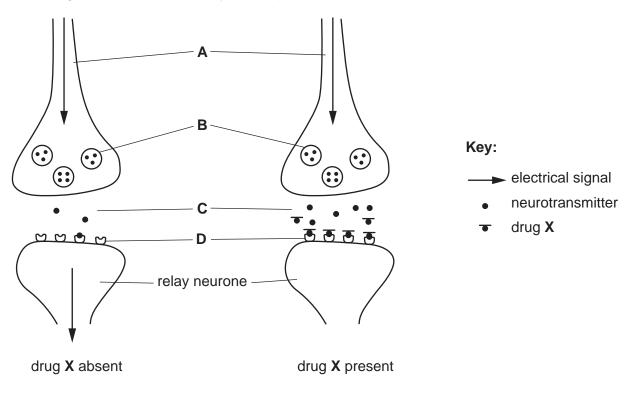


Fig. 2.2

State the names of A, B, C and D in Fig. 2.2.

A	
В	
C	
D	
	[4]

escribe g. 2.2.	expla	in hov	v drug	X affe	cts the	function	of the	e relay	neurone	shown in
 	 									[3]

© UCLES 2020 0610/42/M/J/20

(ii)

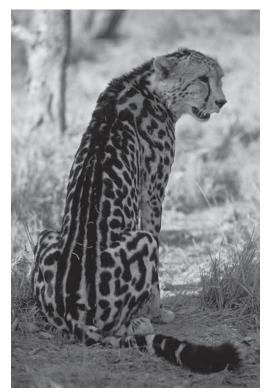
(g)	Drug ${\bf X}$ can be injected into the body. This is one way that HIV can be transmitted.
	Describe two other ways that HIV can be transmitted.
	1
	2
	[2]
	[Total: 23]

BLANK PAGE

3 Cheetahs, *Acinonyx jubatus*, are carnivores found in the dry grasslands and woodlands of southern Africa. Cheetahs hunt for food during the day. They eat deer and antelope.

The cheetah is the fastest mammal on land but can only run at high speed (sprint) over a short distance. Its hunting strategy is to creep up on prey and then sprint to catch them.

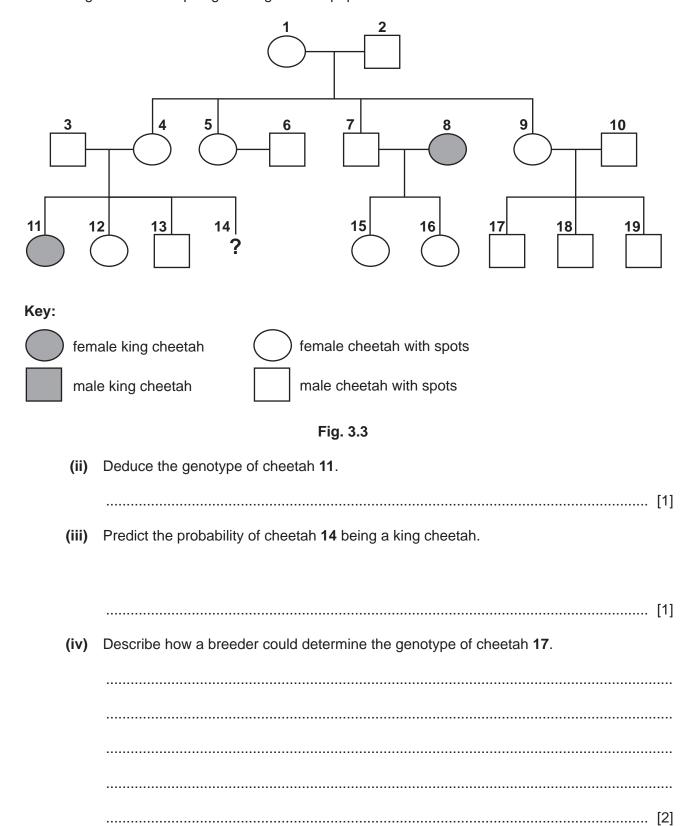
Fig. 3.1 is a photograph of a cheetah in its natural habitat.


Fig. 3.1

(a)	Suggest how these adaptive features enable cheetahs to survive in their natural environment.
	fur colouring
	streamlined body shape
	[2]

(b) The king cheetah is a rare variety of *A. jubatus* that has inherited striped fur markings.

Fig. 3.2 shows a cheetah with spots and a king cheetah.


cheetah with spots

(i)

king cheetah

Fig. 3.2

Fig. 3.3 shows a pedigree diagram of a population of cheetahs.

	(v)	When the king cheetah was first discovered it was thought that it was a new species.
		Pedigree diagrams of cheetahs proved it was not a new species.
		Suggest one type of evidence, other than pedigree diagrams, that can be used to determine how closely related organisms are.
		[1]
(c)	Che	eetahs are at risk of becoming endangered.
	(i)	Suggest why the cheetah is at risk of becoming endangered.
		[3]
	(ii)	Describe how species like the cheetah can be conserved.
	(/	
		[3]
		[Total: 14]

4 Some crop farmers use herbicides on their fields.

Fig. 4.1 shows a farmer spraying a rice crop with herbicides.

Fig. 4.1

(a)	Herbicides kill weeds.
	Explain why farmers use herbicides.

(b) Fields of crop plants were sprayed with two herbicides. A farmer measured the concentration of the two herbicides, **A** and **B**, in a lake near the fields.

The water in the lake was sampled at intervals for two weeks.

Fig. 4.2 shows the results.

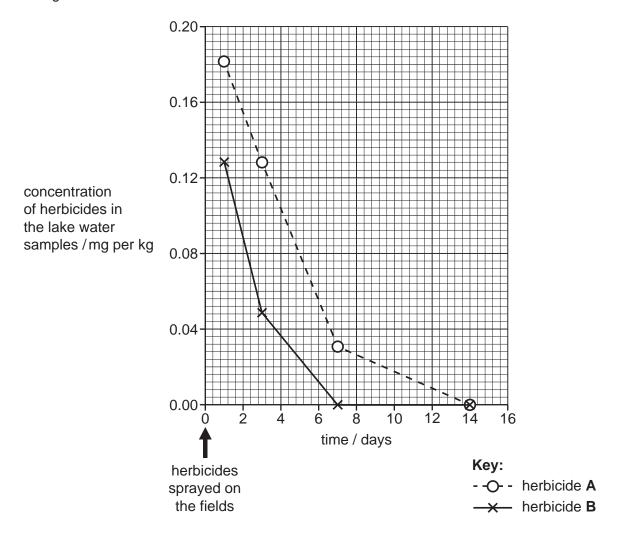


Fig. 4.2

Compare the concentrations of herbicide **A** and herbicide **B** in the lake.

Use the information in Fig. 4.2 to support your answer.

[Total: 15]

	(ii)	Suggest how herbicides damage ecosystems in a lake.
		[41]
(c)	Hor	bicide A is a synthetic plant hormone called 2,4-D that selectively kills dicotyledonous
C)		its only.
	(i)	State two features that distinguish leaves of dicotyledonous plants from leaves of monocotyledonous plants.
		1
		2[2]
	(ii)	State the name of a natural plant hormone that stimulates cell elongation.
	/:::\	Lightinide P is a chemical that provents the untake of magnetium into
	(iii)	Herbicide B is a chemical that prevents the uptake of magnesium ions. Suggest how herbicide B kills plants.
		Suggest now herbicide B kills plants.
		[3]
		[0]

5 The Galápagos Islands are a group of small islands in the Pacific Ocean.

In 1839 Charles Darwin published a book that described differences in a family of birds called finches.

Each species of Galápagos finch had:

- a different diet
- a different beak shape, as shown in Fig. 5.1.

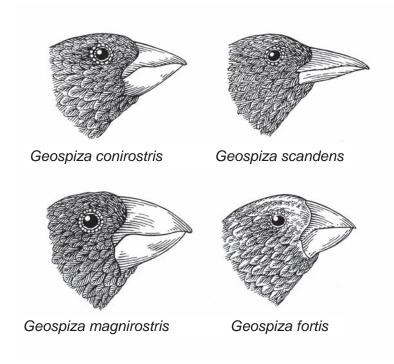


Fig. 5.1

(a) State the genus name for the Galápagos finches shown in Fig. 5.1.

(b)	Galápagos finches share a common ancestor.
	Suggest how Galápagos finches have evolved different shaped beaks.
	[5]
	[Total: 6]

6 (a) Fig. 6.1 is a diagram showing some parts of a plant. The circle shows a magnified cross-section of part of the stem.

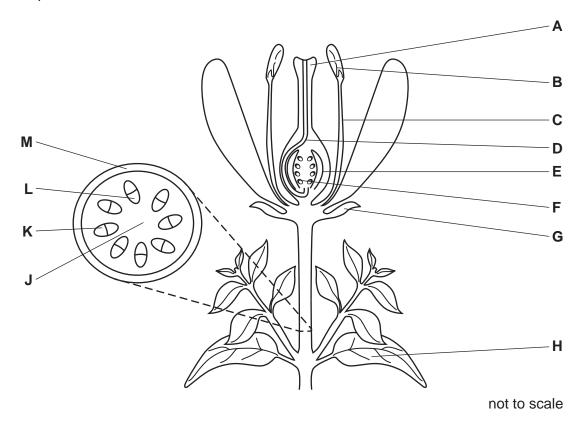


Fig. 6.1

- (i) Table 6.1 contains statements about the functions of some of the structures in Fig. 6.1.
 Complete the table by:
 - stating the name of the structure
 - identifying the letter that labels that structure.

Table 6.1

function	name of structure	letter from Fig. 6.1
provides support to the stem		
protects flower bud		
produces glucose		
produces pollen		
delivers male nuclei to the site of fertilisation		

[5]

(ii)	State one letter from Fig. 6.1 that identifies a structure that contains a haploid nucleus.
	[1]
(iii)	State the name of the process that describes the transport of sucrose in a plant.
	[1]
(iv)	State one letter from Fig. 6.1 that is a structure that is an example of a source for sucrose transport.
	[1]
(b) In a	ddition to sucrose, amino acids are also transported in plants.
(i)	State the name of a mineral ion that becomes part of an amino acid.
	[1]
(ii)	State the name of the structures inside cells that assemble amino acids into proteins.
	[1]
(iii)	State the name of the group of molecules that are made of proteins and act as catalysts.
	[1]
	[Total: 11]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.